

The Power and On-Board Propulsion

Technology Division

SHEILA Brillief

Smila. Baily & lerc. nosa. grv

National Aeronautics and Space Administration Lewis Research Center

POWER & ON-BOARD PROPULSION TECHNOLOGY PROGRAMS

Propulsion Technology Division

FY 96

NASA

OSAT

- SPACECRAFT & REMOTE SENSING
- · CLEAN CAR (PNGV)
- · CCDS/INSTITUTES
 - AUBURN
 - TEXAS ALM

ISSA

- PV ARRAYS
- BATTERIES
- SPACE ENVIRONMENT
- · EPS TESTBED
- · RADIATORS

CODES M, S, U

- EMA's AND INTEGRATED ELECTRICAL PWR. SYS.
- NEW MILLENNIUM (DS-1, EO-1)
- SPACE ENVIRONMENT
- · HST, RF
- · FUEL CELLS, PMAD

CODE AE

- BATTERIES
- WIRING
- · ENVIRONMENT
- · SYS. ENGINEERING

NASA

AERONAUTICS

- FBL/POWER-BY-WIRE
- ERAST
- RBCC

DOE

- · FUEL CELLS
- BATTERIES
- · PV's
- DYNAMIC SYSTEMS
- · HYBRID VEHICLES
- · SBIR's
- PLASMA PROCESSING & MANUFACTURING

ARPA

- BATTERIES
- UUV, FUEL CELLS
- SEMI-CONDUCTORS
- COATINGS
- · TRP's

NRL

- SOLAR DYNAMICS
- · UAV
- · HALL THRUSTERS
- · DIRECT DRIVE SYSTEM
- · ARCJET & ION

USAF

- · PYD/BATTERIES
- THERMAL MGNIT, HEAT PIPES
- MORE ELECT. AIRPLANE
- · EMA's
- UAV
- · RADIATORS
- SOLAR BI-MODAL/IBUS
- · FLYWHEELS
- HALL THRUSTERS, PPT, ADV. BIPROPS

BMDO

- SPACE ENVIRONMENT
- INNOVATIVE TECH
- POWER/PROPULSION AGENT
- · HALL THRUSTERS
- SCARLET
- · LOW THRUST CHEMICALS

NSF/NIST

- ANTARCTIC POWER
- SENSORS
- ATP

PNGV

- · SYSTEMS ANALYSIS
- BATTERIES
- FUEL CELLS
- PMAD
- CONVERSION
- · TEST BEDS

FLIGHT EXPERIMENTS

- · APEX/LDEF
- · PASP +
- · COMET
- · MESUR/PATHFINDER ROVER
- · NSTAR
- · MIGHTY SAT &
- · NaS
- · TES, SAMPE 1.2
- · TRMM/EOS
- EURECA
- · PFF
- · 25TI
- · NEW MILLENNIUM (DS-1, EO-1)

U. S. NAVY

- · ELECTROLYZEN
- · RFC TEST BED

CIA

- BATTERIES
- · FUEL CELLS

OTHERS

- · > 128 JOINT/CO-OPERATIVE PROGRAMS
 - INDUSTRIES
 - GOVERNMENT
 - UNIVERSITIES
 - ETC.

Lerc Spacecraft - System Power Technology Program

PRESENT MAJOR PROGRAM ELEMENTS

* - 20% COMMERCIAL MBG PV MAN TECH PROGRAM

- 6 x 6 cm COMMERCIAL CELLS FY 98, 25% AREA, MASS REDUCTION, 15% COST REDUCTION OVER GaAs/Ge
- EOS, COMMERCIAL, DOD, PLANETARY, ISS, HEDS, AERO

* · 2.6 kWe SCARLET CONCENTRATOR ARRAY - FLIGHT HARDWARE FOR NMP FLIGHT

- ENABLES SEP DEMO, FY 97 FLIGHT HARDWARE TO DEL
- 1.5 SOA IN EFFICIENCY, 30 W/m2 (2 x SOA), 80 W/kg (1.4 x SOA), 1/2 COST
- PLANETARY, DOD, COMMERCIAL, ISS, HEDS

ADVANCED CPV Ni-H2 BATTERY

- > 1 kWe, 100 W-hr/kg 2 x SOA, 60% DOD ~ 2x SOA, 10 YEAR LEO
- EOS, COMMERCIAL, DOD, PLANETERAY, HEDS

· BIPOLAR NIMH BATTERY - FY 99. < 1 kWe

- 100 W-hr/kg 3 x SOA, 1/2 VOLUME, 1/2 COST
- EOS, COMMERCIAL, DOD, PLANETARY, ISS, HEDS

* FLYWHEEL ENERGY STORAGE/ATTITUDE CONTROL SYSTEM

- 10 x REDUCTION IN STORAGE SYSTEM W/kg
- 20 Whr/kg DEMO, FY97
- EOS, COMMERCIAL, DOD, SHUTTLE, ISS, TERRESTRIAL, HEDS

*• MODULAR ELECTRIC POWER SYSTEM BUILDING BLOCKS

- STANDARDIZED SMALL S/C POWER SYSTEMS
- 400 W/kg, 2 x SOA DEMO FY 96 SSTI FLIGHT, 1000 W/kg FY 99 COMMERCIAL APPLICATIONS, PLANETARY, EOS, DOD, AERO, HEDS

Lerc Spacecraft - System Power Technology Program

PRESENT MAJOR PROGRAM ELEMENTS

(CONTINUED)

* · 10 - 300 K CRYOGENIC ELECTRONICS SYSTEM FOR PLANETARY SPACECRAFT

- ELIMINATE RADIOISOTOPE HEATING UNITS,
- EOS

* - LI-SOLID POLYMER - BATTERY

- 15 A-hr DEMO

FY 98

- SPACE PROTOTYPE

00

150 W-hr/kg (3 x SOA)

250 W- & (3 X SOA)

1/2 COST, >> 2000 CYCLES

- PLANETARY, GEO, DOD APPLICATIONS, EOS, COMMERCIAL, ISSA, HEDS

* ADVANCED RADIOISOTOPE POWER SYSTEM DEMONSTRATION

- 20% EFF., 3 5 REDUCTION IN Pu INVENTORY
- FY 98 DEMO, DOWNSELECT PLANETARY, PLUTO EXPRESS APPLICATION, MARS

TECHNOLOGY TRENDS

SOLAR CELL TECHNOLOGY

	STATE OF TECHNOLOGIES	NEAR TERM	FUTURE
CRYSTALLINE CELL TECHNOLOGY	Silicon - 14.5% GaAs/(Ge) - 18.5% Production Levels	GalnP ₂ GaAs - 24% in large area, production GalnP ₂ GaAs - 26% limited quantities	+ 35% CELLS (Planar or Concentrator Applications)
THIN FILM CELL TECHNOLOGY	Not Available	Amorphous - Si - 10%	CIS ~ 20% High efficiency thin thin teeth., low cost, light weigth, mondithic interconnections, 1000 W/kg
ARRAY TECHNOLOGY	30-50 W/kg - Rigid Panels	APSA - 130 W/kg (Si), 5.3 kW GEO	Lightweight array starthurs findigtables

60 W/kg - Flexible panels Cost ~ \$ 1000 - \$ 2000/W

APSA - 130 W/kg (Si), 5.3 kW GEO Ultraflex - 115 W/kg (Si), 140 W/kg (GaAs) both mission and size specified/limited SCARLET concentrator - 50 - 60 W/kg radiation hardness, low cost \$500 - \$700/W

Lightweight array structures (inflatables, shaped memory mech., hybrid designs)
Goal: 300 W/kg @ array level, < 300 2/W High voltage array designs, 300-1000V reduce/eliminate PMAD, direct drive EP Large area concentratora/dense arrays Synergistic SC subsystems, combine power & communications, power and propulsion at the SC level integrated energy conversion/power storage concepts

PHOTOVOLTAICS

- THE NEXT STEP IN IMPROVED EFFICIENCY, AT COMPETITIVE COST
 - PLANAR MULTI-BAND GAP CELLS/ARRAYS
 - NEAR TERM LARGE AREA (6 x 6 cm) CELLS, 24-26% EFFICIENT
 - GalnP/GaAs
 - WIDE RANGE OF APPLICATIONS, NASA, DOD, COMMERCIAL
 - COMMERCIAL CELLS IN 1998

Array Coll Type
Array Mass for Different Cells *

* 1.5 kW ARRAY -

Space Power and On-Board Propulsion Program
Lewis Research Center

PHOTOVOLTAICS

- ADVANCED RESEARCH MULTI-BAND GAP CELLS → ≥ 30 EFFICIENCY
 PLANAR APPLICATIONS
 - 2 PARALLEL APPROACHES
 - 3 JUNCTION CELLS GalnP₂/GaAs/Ge
 - COMPLEX STRUCTURE
 - FAMILIAR MATERIALS
 - 2 JUNCTION CELLS FROM ALTERNATE MATERIALS
 - SIMPLE STRUCTURE
 - MORE COMPLEX MATERIALS
 - IN-HOUSE SBIR'S

PHOTOVOLTAICS

CONCENTRATOR ARRAYS

- NASA STU**DIES (EARLY 1980's) SHOWED MULTIPLE BENEFITS**
 - LOW COST (< 1/2 CURRENT PLANAR ARRAYS)
 - REDUCED CELL COSTS
 - MANUFACTURING & ASSEMBLY COSTS LOWER BY ~ 80%
 - HIGH PERFORMANCE
 - SMALLER AREA
 - INCREASED RADIATION TOLERANCE
 - HIGH VOLTAGE OPERATION
- · Lerc Approach: Refractive, Linear concentrator optics
 - LOW COST, CURVED FRESNEL LENS @ 7.5x
 - SINGLE AXIS TRACKING
 - SMALL AREA MBG CELL @ 24%

APPLICABLE TO ALL SATELLITE CLASSES/MISSIONS

SCARLET/METEOR ARRAY

- SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) with high efficiency MBG solar cells could provide power for a variety of new missions
- Chosen for solar electric propulsion mission for New Millennium Program- (2.6 kW arrun)
- Expected major performance advancements
 - Efficiency (1.5 x SOA)
 - Area ~ 300 W/m2 (2.0x **SQA**)
 - Weight ~ 80 W/kg (1.4 x SOA)
 - Cost ~ 1/2 SOA Plener
 - Radiation hard array
 - Minimum plasma interaction enables high voltage operation
 - Reduces low illumination, low temperature (LILT) effects

PHOTOVOLTAICS SCAPILET II

SCARLET II / DS-1 WING

- SCAPILET PV CONCENTRATOR TECHNOLOGN
 - BASED ON LERC DEVELOPED TECHNOLOGY (SBIR & BASE PROGRAMS)
 - Lerc Providing Technical Leadership AND FACILITIES TO SUPPORT JPL PLIGHT PROGRAM
- **NEW MILLENNIUM DS-1 ARRAY**
 - FIRST OPERATIONAL USE OF PV CONCENTRATOR TECHNOLOGY IN SPACE
 - STRONG COMMERCIAL INTEREST
 - 2.6 kW ARRAY GainP/ GaAs M.J. CELLS
 - POWERS NSTAR ELEC. PROP. SYSTEM
 - AUGUST 1997 DELIVERY, JULY 98 LAUNCH
 - DESIGN EMPHASIZES LOW COST (< 1/2 RECURRING COST vs. SOA)
 - CRITICAL DESIGN REVIEW COMPLETED -JULY 1996

Lerc DEVELOPED TECHNOLOGY TO PROVIDE POWER FOR NMP DEEP SPACE-1 FLIGHT

ADVANCED RADIOISOTOPE POWER SYSTEM DEVELOPMENT WITHIN NASA AND DOE

- AMTEC
- THERMOPHOTOVOLTAIC
- STIRLING
- RTG (NOT COVERED)

ELECTRICAL SYSTEMS DEVELOPMENT

Lerc's Involvement in a wide range of programs has identified a critical common need.

RANGE OF PARAMETERS

SWITCHGEAR

28V, 120V, 270V

POWER CONVERTERS -

25 TO 1500 WATTS (SCALEABLE TO 10+ KILOWATTS

Space Power and On-Board Propulsion Program Lewis Research Center

ELECTRIC POWER SYSTEM TEST AND INTEGRATION FACILITY

- 35 kW SOLAR ARRAY FIELD AND HIGH VOLTAGE NIH BATTERIES
- SUPPORTS MULTIPLE POWER PROCESSING AND SWITCHING ELEMENTS
- DISTRIBUTED CONTROL & DATA COLLECTION SYSTEM USING 30,000 LINES OF ADA CODE
- RECONFIGURABLE TO SUPPORT A VARIETY OF SYSTEM TOPOLOGIES & APPLICATIONS
- PERFORM SUNLIGHT TO LOAD TESTING OF SPACE ELECTRIC POWER SYSTEMS

ELECTRONICS FOR COLD OPERATION TEMPERATURES

POWER TECHNOLOGY Division

- ENABLING TECHNOLOGY FOR NON-NUCLEAR DEEP SPACE MISSIONS (300K 40-60K)
 - IMPROVED SOLID-STATE RELIABILITY
 - REDUCED MASS
 - LOWER COST
- PROGRAM DEFINED, IMPLEMENTED
 - SPACECRAFT PAYLOAD INEGRATED POWER REQUIREMENTS
 - ALSO SUPPORTS HIGH DENSITY ELECTRONICS
 - LOW TEMPERATURE COMPONENT CHARACTERIZATION
 - LOW TEMPERATURE SYSTEMS CHARACTERIZATION
 - NEW COMPONENT DESIGNS

FLYWHEEL ENERGY STORAGE SYSTEMS

• BENEFIT OF FLYWHEEL ENERGY STORAGE OVER SOA BATTERY SYSTEMS CLEARLY IDENTIFIED

- 10 TO 20 X IN W-Hr/Ib IMPROVEMENT ATTAINABLE
- ISS ACKNOWLEDGES BENEFIT OF FLYWHEEL SYSTEM AS REPLACEMENT FOR NiH₂ BATTERIES

- · BATTERY SYSTEMS
 - BATTERY: CELL + WIRE INTERCONNECTS, BYPASS DIODES, SUPPORT BOX
 - BATTERY SYSTEM: RECONDITIONING CIRCUITS, ARRAY REGULATOR, ARRAY OVERSIZE, BUS REGULATOR

		TECHNOLOGY TRENDS	Power
1		BATTERIES	TECHN
STATE OF TECHNOLOGY		NEAR TERM	EITHE DIVIÉ
<u> </u>	<u>.VVI</u>	COMMERCIAL APPLICATIONS	LIGHTWEIGHT NI ELECTRODE
*CELL Wh/kg	50	80	100
BATTERY WIVING	32	50	65
Wh/I	17	20	20
RELATIVE COST	1	.8	.6
LIFE (YRS)	6	8	10 LEO
		COMMERCIAL APPLICATIONS	LIGHTWEIGHT Ni ELECTRODES
CELL Wh/kg	55	70	OPTIMIZED DESIGN FEATURES 120
BATTERY WIVING	45	55	100
Wh/I	60	80	120
RELATIVE COST	1	.5	.5
LIFE (YRS)	2	5	10 LEO
		PRISMATIC	LIGHTWEIGHT NI ELECTRODES BIPOLAR DESIGN
CELL Wh/kg	55	65	100
BATTERY Wh/kg Wh/l	53 160	50 185	80
RELATIVE COST			260
LIFE (YRS)	1 1	.6 5	.5
(<i>)</i>	•	3	20 GEO
CELL Wh/kg	160	OPTIMIZED INTERCALATION	ALL SOLID MULTI LAYER DESIGN
BATTERY Wh/kg	130	180 150	220 175
Wh/I	240	260	300
RELATIVE COST	1	.5	2
LIFE (YRS)	.3	10	20 GEO
@ 100% DOD, BATTERY NUMBERS	@ 80% DOD		

Lerc Lithium ion solid polymer battery program elements

- MAJOR EFFORT TO DEVELOP A DUAL-USE LI-ION SOLID POLYMER BATTERY FOR COMMERCIAL, MILITARY, & SPACE APPLICATIONS
 - DEMONSTRATED 3 x IMPROVEMENT IN W-hr/kg OVER NiCd
 - AUTOMATED PRODUCTION
- LORC RESEARCH & TECHNOLOGY EFFORTS TO IMPROVE BATTERY PERFORMANCE AND LIFE TO MEET SPACE APPLICATION REQUIREMENTS
 - LeRC/TEXAS A&M/HUGHES FUNDAMENTAL INVESTIGATIONS
 - ADDRESSING LI-ION POLYMER CELL FUNDAMENTALS
 - LeRC IN-HOUSE
 - IMPROVE ANODE PERFORMANCE VIA MODIFICATION OF GRAPHITE STRUCTURE TO INCREASE LI-ION INTERCALATION
 - Lerc Phase II sbir with Mer, Inc.
 - IMPROVE ANODE PERFORMANCE VIA USE OF SPECIALLY PREPARED SINGLE WALL OPEN ENDED FULLERENE NANOTUBES
- COORDINATION WITH LI-ION BATTERY ASSESSMENT AND CHARACTERIZATION TASKS OF LeRC-MANAGED CODE AE FLIGHT BATTERY SYSTEMS PROGRAM

ADVANCED LIGHTWEIGHT CPV BATTERY

FEATURES

- 2 x IMPROVEMENT IN SPECIFIC ENERGY 100 Whr/kg
- 20% VOLUME REDUCTION
- LONG CYCLE LIFE AT DEEP DEPTHS OF DISCHARGE (DOD) - 10 YR LEO AT 60% DOD, 15 YR GEO

Lerc Award Winning Nih₂ Technology Applied to Commercial Spacecraft AND ISS Applications

Power & On-Board Propulsion Technology Division

- Lefic/Mughes, in a cooperative program, have developed an advanced Nim2 Battery
 - MPROVED IPV NICKEL HYDROGEN BATTERIES TO MEET COMMERCIAL SPACECRAFT NEEDS FOR 1997 AND BEYOND
 - 50% VOLUME REDUCTION
 - 20% COST REDUCTION
 - 50% LONGER LIFE
 - CELL DESIGN COMPLETE, FLIGHT BATTERIES BUILT AND BEING FLIGHT QUALIFIED
 - FIRST FLIGHT 1997 BOOKED ON 26 SPACECRAFT AT PRESENT
 - FURTHER TECHNOLOGY DEVELOPMENT IMPROVEMENT POSSIBLE
 - 5 YEARS ADDITIONAL LIFE
 - 2 x IMPROVEMENT IN W-hr/kg

- APPLICATION OF THIS TECHNOLOGY IN IPV BATTERIES COULD BE USED FOR ISS STUDIES SHOW REDUCTION OF OPERATING COST BY \$240 MILLION AVAILABLE
 - IMPLEMENTATION CURRENTLY BEING CONSIDERED BY CONFIGURATION CONTROL BOARD

LeRC 25 kW SOLAR/REGENERATIVE FUEL TEST BED AT EDWARDS AFB, EDWARDS, CA

Solar Cells

Fuel Cells

Electrolyzer

Space Power and On-Board Propulsion Program Lewis Research Center